At this point, the case for evolutionary progress in a biologically closed system depends heavily on the remotest evidence of all, the new perfect barrier to life, the big bang. If the whole universe is a permanently closed system that began in a lifeless state a finite time ago, then evolutionary progress, including the origin of life, must have subsequently happened in it. But the big bang theory is plagued with frequent surprises (e.g. Glanz, 1998). In some versions, big bangs are preceded by other big bangs ad infinitum (Guth, 1997), and ways for life to persist through big bangs have been proposed (Frautschi, 1982; Krauss and Starkman, 1999). In any case, to understand evolutionary progress biology should be able to cite firmer and more immediate evidence than the big bang!
With its basis insecure and under revision, and with an alternative becoming apparent, the theory that life makes evolutionary progress in a closed system needs additional support.
Computers, like life, rely on encoded instructions. They also exhibit evolutionary progress. Accumulated improvements have made commercial software far more powerful today than only fifteen years ago. Of course, this evolution has occurred in an open system, because people installed the improvements. But computer experiments that attempt to model evolutionary progress in closed systems are under way (e.g. Ray, 1996). The work is called "artificial life" and various other names, and the experimental environment is not restricted to conventional software. Obviously, a closed-system model that exhibited lifelike, sustained evolutionary progress would have profound importance for biology. In fact, many closed-system computer models exhibit surprising behavior or solve preestablished problems. But in spite of much honest effort, none has achieved ongoing, open-ended evolutionary progress. They all remain confined within their original parameters.
Nevertheless, computer scientists are confident that an unquestionable demonstration of evolutionary progress in artificial life is imminent, because they think they are only trying to model a phenomenon already proven in biology. Many biologists, on the other hand, are under the impression that computer models have already corroborated evolutionary progress in a closed system.
Yet the phenomenon has not been unequivocally demonstrated in either medium. Until it is, one can reasonably doubt that evolutionary progress in a closed system is possible, in real or artificial life.
Acknowledgments
The author thanks Max Garzon, Chris Langton and Dan McShea for their advice and encouragement.