Brig:

I attach the report I have been preparing for you.  I want to explain what it is and how it was developed.  I began by doing PubMed searches on “sequence space” and “protein universe”.  I collected all of the papers from both of these searches, and read them.  From these papers, I also collected references that seemed important and read those.  As I read the papers, I made notes, and collected quotations from the papers that seem relevant to our interests.  As I got an overview of what I had read, I tried to arrange the notes into a coherent framework, and incorporate a little bit of explanatory comments.  But for the most part, I have simply tried to summarize what I have read, without comment.  I want to emphasize that I have included notes from all the papers I reviewed, so what is attached is relatively unbiased.  I have not tried to present only that which agrees, or disagrees with your ideas.

Initially, my intention was to see what kinds of computational methods had been used by other workers, to do the kind of analysis that would be required to perform the test that we outlined in our Astrobiology conference poster.  But as I learned more, I realized that other workers have already done similar enough analyses, that it probably would not make much sense to repeat that work.  More importantly, what I learned was devastating to our original plan for testing your ideas through bioinformatics.  I already sent you the summary of that conclusion (also attached below).

Although this review has forced me to reject our original conception of how to test your ideas, it has not led me to reject your ideas.  I consider it a big step forward for the project, because now we are in a position to make a much stronger test, focused on the evolution of functionality or structure, rather than sequence.
This is just an interim progress report.  I believe the next step is to review papers focused on the topic of the evolution of structure and function, rather than the evolution of sequence.  I hope that you will take the time to read this document, because I put quite a lot of work into preparing it, and I learned a lot in the process.  I hope that you might also learn what I have learned, so that we can have a common base of knowledge to facilitate our discussions as we continue to develop our research.  I have electronic versions of most of the papers which I can make available if you like, and I can provide hard copies of the others, at your request.

Protein Evolution

We believe that the footprints of evolution can be found in abundance in the genome databases.  We should easily be able to discriminate between the hypotheses of Darwinism and Strong panspermia.  “Standard Darwinian theory holds that new genetic programs arise from existing ones through gene duplication and divergence. Thus, a new program would acquire its final sequence gradually over time, as illustrated next.”
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Under Strong panspermia, new genes “could be imported to Earth's biosphere and installed by gene transfer. If so, an earlier version of a genetic program would differ only slightly, if at all, from its final sequence. The progress of a genetic program over time, according to strong panspermia, is illustrated next.”
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The purpose of this review is to see what the current literature can reveal about this issue, and to learn what methods can be used to pursue the questions further.  

The most important point that I learned from this review, is that protein sequences can and do evolve all the way to random similarity (~8%), while retaining the same structure.  If we are to test between Darwinism and Strong panspermia as described above, based on evidence of changes in protein sequences, then we must absolutely reject Strong panspermia.
Although the literature strongly makes the point that sequences can and do change beyond recognition while retaining their structure, the literature does not present a clear picture of what is probably a more important question: can evolutionary change in protein sequences lead to new structures and new functions?  I would like to suggest that we abandon the test that we had envisioned (above, based on sequence divergence alone), and that we rephrase the test on the basis of the evolution of new structures and functions.  I am just now in the process of formulating the new approach, but I think I would begin by examining large families of proteins (defined by sequence homology) to find out how much diversity of structure and function they exhibit.

In what follows, I make notes on the relevant points from the papers I reviewed.  I begin by organizing the review around the key concept of “neutral networks”, then I move on to studies of the distribution of proteins in sequence space.

Scale-free Networks – Many distributions in nature fit power-law distributions.  Recently some of these distributions have been describe as “scale-free networks”.  Several kinds of distributions involving proteins fall into this category, so I will start by reviewing some papers focused on this aspect.  In this context, “network” refers to a collection of entities, with connections between them.  The “entities” could be proteins, domains, or folds.  The connections between them could be relationships based on sequence or structural similarity.  Perhaps most relevant to this review is understanding the implications of finding a distribution to be “scale-free” or “power-law”.  Some papers suggest that finding such a distribution implies that a system was generated by branching from existing “nodes” rather than random connection of nodes.  This provides insights into the kind of evolutionary process that created the system.
Wolf et al. (2002) review some work on scale free networks in biology.  “The shape of the connectivity distribution defines two major classes of random networks:  i) homogeneous networks, in which the number of connections peaks at the average value and then decays exponentially or ii) scale-free networks, in which the distribution of the number of connections in a vertex follows a power (Zipf) law.  The scale-free networks exhibit the following properties: (i) contain a relatively small, but significant number of highly-connected nodes, which are practically absent in homogeneous networks; (ii) are self-similar (i.e. any part of the network is statistically similar to the whole), (iii) have a relatively small diameter, i.e. any two nodes can be connected via a small number of intermediate nodes (“small-world behavior”), and (iv) are highly tolerant to errors (random removal of a significant fraction of nodes leads to just a small increase in network diameter), but vulnerable to attacks (deliberate removal of highly-connected nodes, which disrupts the network).”
“Many real-life networks, e.g. relationships between actors cast in the same movie, co-authorship and cross-citation in the scientific community, power grids and cross-references between documents in the World Wide Web, display properties characteristic of the scale-free networks.  It has been found that the scale-free nature of networks could be easily modeled: while homogenous networks arise from random rewiring of nodes, the networks that grow by sequential addition of nodes tend to self-organize into scale-free structures.  Thus, it appears that the aforementioned networks display scale-free behavior because all of them are products of gradual, evolutionary growth rather than re-connection of existing nodes.”

The authors end by suggesting that the concept of scale-free networks has not yet produced a concrete benefit: “Still, the actual utility of these revelations for discovering non-trivial features of a particular object of study, such as integration of the cell components into a coordinated molecular machine or evolution of multidomain proteins, remains somewhat elusive.  It seems that this particular branch of biomathematics has not yet crossed the line between abstract discourse and actual research tools and techniques.  There is, however, a strong anticipation that it will because it is hard to believe that something as general as scale-free network properties does not have concrete epistemological value.”

Rzhetsky and Gomez (2001) develops a simple model that generates abstract scale-free networks, and suggests that it can be used to make quantitative predictions about real molecular networks.  “… there are a number of existing models of growing random graphs that have some relevance to regulatory networks.  The simplest stochastic model (Erdos and Rényi, 1960) starts with a set of unconnected vertices and then proceeds through all possible pairs of vertices making a new edge with a constant probability.  This and a few other more complicated models … produce graphs with a bell-shaped rather than a power-law connectivity distribution.  To obtain random graphs with scale-free properties, the existing models explicitly assume that the graph (network) is growing via addition of new vertices and new edges in such a way that the probability of a new vertex being connected to an ‘old’ vertex is proportional to connectivity (the number of edges incident) of the old vertex”.
Dokholyan et al. (2002) use the current distribution of proteins in structure space to infer the kind of process that created the distribution, in an analogy to astronomers inferring the process of cosmic evolution from the cosmic microwave background.  Therefore they title their paper “Expanding protein universe and its origin from the biological Big Bang.”  This paper directly attempts to discriminate whether the data support a process of duplication and divergence, or creation of new forms de novo.  They use the implication that scale-free networks are the result of processes like duplication and divergence, rather than creation de novo, to discriminate between the two processes.  They use data from protein structure databases, and “we employ a graph representation of the protein domain universe, in which we consider only protein domains that do not exhibit pairwise sequence similarity in excess of 25%, and each such protein domain represents a node of the graph….  Structural similarity between each pair of protein domains is characterized by their DALI Z score.  We define a structural similarity threshold Zmin and connect any two domains on our graph that have DALI Z score Z ≥ Zmin by an edge.  Thus we create the protein domain universe graph (PDUG).”
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Fig. 1.  An example of a large cluster of TIM barrel-fold protein domains.  Protein domains whose DALI similarity Z score is greater than Zmin = 9 are connected by lines.

“The discovery of the scale-free character of the protein domain universe is striking and represents the main result of this paper.  It has immediate evolutionary implications by pointing to a possible origin of all proteins from a single or a few precursor folds – a scenario akin to that of the origin of the universe from the Big Bang.  An alternative scenario, whereby protein folds evolved de novo and independently, would have resulted in random PDUG (similar to the one shown in Fig. 3b) rather than that observed in the scale-free one.”
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Fig. 3.  The distribution of node connectivity P(k) for PDUG (a) and for random graph (b) at their corresponding Zc.  For PDUG Zc ≈ 9; for random graphs Zc ≈ 11.  Node connectivity denotes how many proteins a given protein is connected to by structural similarity connections.

They go on to develop a simple random model of protein evolution by duplication and divergence, and find that it produces a scale-free network rather than the random one.  “The presented model, being coarse-grained, does not aim at a detailed and specific description of protein evolution.  However, it illustrates that divergent evolution is a likely scenario that leads to scale-free PDUG.”  “The most striking qualitative aspect of the observed distribution is the much greater number of orphans compared with random graph control….  A natural explanation of this finding is from a divergent evolution perspective.  The model of divergent evolution presented here is in qualitative agreement with PDUG, as it produces large (compared with random graph) number of orphans at all values of wmax.  Orphans are created in the model mostly through gene duplication and their subsequent divergence from precursor.  This conjecture may be meaningful biologically, because duplicated genes may be under less pressure and, hence, prone to structural and functional divergence. The divergent evolution model presented here is a schematic one, as it does not consider many structural and functional details, and its assumptions about the geometry of protein domain space in which structural diffusion of proteins occurs may be simplistic. However, its success in explaining qualitative and quantitative features of PDUG supports the view that all proteins might have evolved from a few precursors.”

Neutral Networks – One of the key principles to understanding protein evolution is what has been called “neutral networks.”  The idea can be traced back to Kimura (1968) and King and Jukes (1969) who “proposed a new interpretation of molecular evolution, that was named the neutral theory of molecular evolution, reviewed in Kimura (1983).  According to this theory, most of the changes in protein sequences happen not because better variants of the protein are found but because many mutations do not modify significantly the efficiency of the protein, so that natural selection cannot avoid their spreading through the population by random genetic ‘drift’” Bastolla et al. (1999).

The basic idea of neutral networks is that a network of sequences connected by single mutations can map to one functional structure.  The idea is related to John Maynard Smith’s (Maynard Smith 1970) concept of a protein space: “if evolution by natural selection is to occur, functional proteins must form a continuous network which can be traversed by unit mutational steps without passing through non-functional intermediates.”  Evidence for the role of neutral networks comes from several directions, including: RNA secondary structure models, protein folding lattice models, inverse folding techniques, and surveys of sequence distributions for proteins of known structure.
RNA secondary structure – The protein folding problem has not been solved, and there is no prospect of its solution in the foreseeable future.  This is the problem of being able to determine the three-dimensional structure of a protein molecule from its sequence of amino acids.  A related but much simpler problem has been solved: RNA secondary structure.  We are able to determine the pattern of loops and ladders formed by RNA from its nucleotide sequence.  For example (from Fontana & Schuster  1998):
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The evolutionary relationship between sequence and structure has been thoroughly studied for this system.  Some key papers in this work are: Fontana & Schuster  1998, Huynen et al. 1996, Schuster et al. 1994.  The key lessons from this work are:

· Frequencies of structures are highly non-uniform and follow a generalized form of Zipf’s law: we find relatively few common and many rare ones.

· The sequence space is percolated by extensive neutral networks connecting nearest neighbors folding into identical structures.
· Sequences folding into the same structure are randomly distributed in the space of sequences.

· All common structures can be accessed from an arbitrary sequence by a number of mutations much smaller than the sequence length (see image below from Schuster et al. 1994).

· 21.7% of all neutral paths are able to percolate the entire sequence space and end in sequences which have not a single base in common with the reference.

· Finding a particular structure by mutation and selection is much simpler than expected.
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Figure 5.  A sketch of the mapping from sequences into RNA secondary structures as derived here.  Any random sequence is surrounded by a ball in sequence space which contains sequences folding into (almost) all common structures.  The radius of this ball is much smaller than the dimension of sequence space.

From Huynen et al. 1996: “A neutral network, then, is a set of sequences with identical structure so that each sequence is connected to at least one other sequence….  For frequent structures these networks percolate through sequence space.  For example, starting at a sequence that folds into a tRNA structure, it is possible to traverse sequence space along a connected path, thus changing every nucleotide position without ever changing the structure.  Moreover, due to the high-dimensionality of sequence space, networks of frequent structures penetrate each other so that each frequent structure is almost always realized within a small distance of any random sequence.”
Huynen et al. (1996) report the results of two experiments.  First, a population of one thousand copies of a sequence that folds into tRNAPhe is selected to maintain that structure while replicating with mutation.  They find that:

· “Any two populations that are separated in time by ~ 500 generations do not have a single identical sequence in common.”

· “In the presence of percolating neutrality, however, all sequence information is lost at any error rate different from zero.”

In the second experiment, Huynen et al. (1996) start with 1000 copies of a random sequence, and select it to evolve to the structure of tRNAPhe.  They find:
· “almost any structure assumed by a random sequence has its own extended neutral network.”

· “Diffusion enhances the likelihood that a region in sequence space is found where the network of the currently dominant structure comes close to the network of a better structure.”

· “In this contact region a selection-induced transition will occur.”

They predict the following consequences for adaptation:

· Finite populations diffuse along netural networks.  After a sufficiently long time, all sequence information is lost, yet the phenotype is conserved.

· On a single neutral network, the population splits into well separated clusters.  Each undergoes independent diffusion, while all share the same dominant phenotype.

· Neutral networks of different structures are interwoven.  While drifting on a neutral network, a population produces a fraction of mutants off the network and thereby explores new phenotypes.  A selection-induced transition between two structures occurs in regions of sequence space where their networks come close to one another.

· In the context of rugged fitness landscapes: When connected, local optima are no longer local, and this is reflected in the dynamics of adaptation.

Protein folding lattice models – Because the protein folding problem has not been solved, simplified models of protein folding have been developed that allow the exploration of sequence structure relationships for proteins, similar to what we have seen for RNA secondary structure.  The most popular of these are the “lattice models” in which the amino acids are restricted to occurring at the cross-points of rectangular 2 or 3 dimensional grids.  This simplification makes the models unrealistic, but solvable.  Yet the authors claim “Although the highly idealized nature of our abstract evolutionary space precludes any conclusions with respect to real proteins, its simple nature suggests concepts which may apply to evolutionary systems in general,” and “has been shown to share general properties with real proteins” (Lipman & Wilbur 1991).

Lipman & Wilbur (1991) explored evolutionary paths in the sequence space of lattice models, and showed that in evolving through a series of distinct phenotypes (folding structures), the genotypes must utilize a series of neutral mutations before mutations can cause phenotypic change.
Bornberg-Bauer (1997) did an exhaustive study of the distribution of short 2-D lattice model proteins in sequence space.  He grouped sequences that fold into the same unique structure (“neutral set”) and found that there are few frequent structures and many rare structures.  The frequency distribution seems to match “Zipf’s law”.  Most of the sequences folding to the same structure are also connected by single mutations into a “neutral net”.  Interestingly for most neutral nets, there is one “prototype sequence” that represents the consensus sequence, and tolerates the most mutations (up to 55%) without changing structure.  
Significantly Bornberg-Bauer (1997) concludes “Shape space covering, i.e., the ability to transform any structure into most others with few point mutations, is very unlikely”.  “For the most frequent structure it takes only two mutations to cover 10% of all structures, but it takes approximately five mutations to cover 50%.  It requires at least nine selected mutations in nine different positions each to find every structure”.  Let’s be clear that he is stating that it requires a substantial number of mutations to be able to transform an arbitrary sequence into all structures.  However, transformation to any other structure can be accomplished with only one or two mutations.
Bornberg-Bauer (1997) makes the interesting observation that some sequences do not fold to a single unique structure, but rather fold to two or more structures with equal probability.  He cited an example of a sequence that folds to three distinct structures, and showed that single neutral mutations can transform the sequence to ones that fold uniquely into each of those three structures [scan and insert image].  He emphasizes the difference between his finding and that of RNA secondary structure models (cited above): “in the RNA secondary structure case … Within a number of mutations small compared to the length of the sequence, the whole shape space can be covered.  In the HP model, however, the structures are well separated and direct transformations to another structure are rare.”
Bornberg-Bauer and Chan (1999) use a 2-D lattice model to illustrate an interesting property of neutral nets:  “sequences in a majority of neutral nets center around a single ‘prototype sequence’ of maximum mutational stability … On average, native thermodynamic stability increases toward a maximum at the prototype sequence, resulting in funnel-like arrangements of native stabilities in sequence space.”  In other words, if you start with a prototype sequence (defined as the member of the neutral net that is connected by single mutations to the greatest number of members of the same neutral net) and gradually mutate it within the neutral net, the thermodynamic stability decreases as the hamming distance from the prototype sequence increases.

Bastolla et al. (1999) used a 3-D lattice model with sequences of length 36, and 20 different amino acids (Bornberg-Bauer above, used 2-D lattice, sequences of length 18, and 2 different amino acids).  They started each of eight random walks from the same initial highly stable sequence.  Their most relevant finding is: “We prove the existence of extended neutral networks in sequence space-sequences can evolve until their similarity with the starting point is almost the same as for random sequences”.  They elaborate: “large differences in the genotype (viz. the sequence) are compatible with conservation of the phenotype (viz. the native structure).  The set of sequences which fold onto the same structure and are connected through point mutations forms a vast network in sequence space.  Two typical sequences belonging to this set, even if they are evolutionarily related, may have a degree of homology as low as that of random sequences.  Thus sequence similarity is not a necessary condition for two proteins being evolutionarily related.”
Bastolla et al. (1999) makes some direct comparisons between his work and that of Bornberg-Bauer.  He points out: “contrary to the case of RNA, [Bornberg-Bauer finds] the subsets of sequences corresponding to the most frequent structures are localized in sequence space.  This is probably an artifact of the HP [2 different amino acids] model: our study considering 20 amino acid types, reaches the opposite conclusion.”  Also: “An interesting conclusion of Bornberg-Bauer is that neutral networks of different structures are unlikely to be connected by very few point mutations.  This conclusion seems to hold also for the 20 amino acid model presented in this work.”  This last observation is very relevant, however, I can not find any place in the paper where they support that conclusion.  The study did not address the issue of the closeness of different neutral nets.
Tiana et al. (2000) use a 20-letter 3-D lattice model to randomly sample protein space in search of sequences of length fourty-eight, that fold into one particular structure.  They use this system to address the following issue:  “An important question is whether present [day protein] analogues emerged as a result of a long divergent evolution or originated from dissimilar sequences/structures and converged to structurally homologous folds.  A physical approach to address this question is to study the ‘topography’ of space of sequences that fold into the same target conformation.  In particular, the connectivity of the space of sequences via neutral nets (i.e., single mutations that preserve the foldability into this structure) may be a good evidence for divergent evolution as an origin of analogues, whereas the presence of disconnected ‘isles’ in sequence space would be an argument in favor of convergent evolution origin of analogs.”
Tiana et al. (2000) found a tri-modal distribution of sequence similarity between sequences folding into the same structure.  The three peaks were at about 10%, 55% and 95% similarity.  When they repeat the analyis at a higher thermodynamic temperature, the middle peak (55%) disappears.  They interpret the results to mean that the 95% peak represents sequences in the same “cluster”, the 55% peak represents sequences in different “clusters”, and the 10% peak represents sequences in different “superclusters”.  They observe that within clusters, there are six to eight “hot” sites that are 100% conserved.  Each cluster contains multiple sequences, and each supercluster contains multiple clusters.  “Within each supercluster, ‘hot’ sites are in the same position, and the type of residues occupying each of these sites is conserved in 100% of the sequences”.  They found two superclusters, and “half of the ‘hot’ sites of sequences belonging to the first supercluster are in the same positions as the ‘hot’ sites of sequences of the second supercluster and the other half move to neighboring sites.”
Tiana et al. (2000) reach the following conclusions: “Our analysis suggests that the space of sequences that fold into the same native conformations is quite complicated: it is partitioned into clusters and superclusters.  Sequences that belong to different clusters have little similarity despite the fact that they are able to fold into the same native conformation.  Nevertheless, sequences belonging to the same supercluster (but different clusters) have same amino acids in a few strategic ‘hot’ core positions.  Finally, amino acids in core positions vary between superclusters.”  And: “clusters may be connected by neutral networks of sequences that all fold into the same native conformations, albeit with different stabilities.  However, superclusters are separated by barriers that are high enough to exceed Ec at their tops.  This means that it is not possible to pass from supercluster to another supercluster via a neutral network.  Correspondingly, sequences that belong to the same cluster could have appeared as a result of divergent evolution, whereas sequences that belong to different superclusters are likely to appear as a result of convergent evolution.”

Inverse folding techniques – While it is not possible to predict the three dimensional structure of a protein from its sequence, it is possible to solve the inverse problem: finding which amino acid sequences fold into a known three-dimensional (3D) structure (Bowie, et al. 1991).  Studies by Babajide et al. (1997) using this approach attempt to discriminate between the following three possible topologies of a neutral set:
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a) A single localized cluster in sequence space.  This scenario contradicts the existence of seemingly unrelated sequences with the same fold.

b) Many small clusters that are not connected in sequence.  Distant sequences with the same fold can arise only by convergent evolution in this case.

c) A connected neutral network.  Evolution from a common ancestor may proceed on the neutral network without changing the fold until all recognizable sequence homology is lost.  The dynamics of evolution on neutral networks are discussed in detail in Huynen et al. (1996).  One finds a diffusion-like behavior in sequence space.  Snapshots at a given time show clusters in sequence space that have no noticeable sequence homology.
Babajide et al. (1997) conclude that neutral sets have the topology illustrated in case (c) above, and they reach the following conclusions:
· Sequences adopting a given fold do not cluster in sequence space and there is no detectable sequence homology among them.

· Nevertheless, these sequences are connected in the sense that there exists a path such that every sequence can be reached from every other sequence by a series of single mutations while the fold remains unchanged.

· Amino acid sequences folding into a common shape are distributed homogeneously in sequence space.

· Hence, the connectivity of the set of these sequences implies the existence of very long neutral paths on all examined protein structures.

While Babajide et al. (1997) concluded that neutral networks permeate sequence space, they did not address the question of the closeness in sequence space of different neutral networks.  Babajide et al. (2001) directly addressed this question.  They want to know how many mutations it takes for sequences to switch from one neutral network to another, thereby changing functional structure.  They reached these conclusions:

· The sequences folding into a particular native fold form extensive neutral networks that percolate through sequence space.

· The neutral networks of any two native folds approach each other to within a few point mutations.

Surveys of sequence distributions – The advantage of model systems is that we can computationally sample large numbers of sequences that differ by single mutations, and directly examine the properties of neutral networks.  When working with real sequences, that is not practical.  We can however, sample small numbers of sequences that differ by single mutations, as was done by Blanco et al. (1999).  There are effectively two approaches to using real sequences to explore neutral networks: 

· Create mutant proteins and examine their folding properties

· Examine the distribution in sequence space of proteins with the same structure, and with different structures

While work with real sequences does not usually examine the properties of networks of sequences that differ by single mutations, it is possible to examine the properties of groups of sequences that fold into similar structures.  We can examine how such groups of sequences are distributed in sequence space, and to what extent their distributions intersect or come close to groups of sequences that fold into different structures.
Blanco et al. (1999) conducted a study in which they created a series of real mutated proteins, to gradually transform one real protein sequence into another real protein sequence.  The two natural proteins have 8% sequence similarity, and they created 27 hybrid sequences.  Their main observation was that although the two natural proteins are folded (differently), most of the mutant proteins failed to fold at all.  They conclude: “the appearance of a completely new fold from an existing one is unlikely to occur by evolution through a route of folded intermediate sequences.”  Also: “It is argued that for highly optimized sequences (high foldability) the sequence space allowed could be large enough to overlap with other spaces determining another fold, so that it could be reached within a valid (all the sequences being foldable) evolutionary trajectory.  Our experimental results suggest that this is unlikely to happen.”
The work of Blanco et al. has the merit that it is based on experiments with real sequences, rather than simulation.  The problem I see with the work is that they made no effort to mutate the proteins along neutral networks.  Their main point could be interpreted as the observation that most mutations destroy the folding ability of the sequence.  This does not conflict in any way with neutral network theory.  The theory does not claim that most mutants are part of the neutral network.  The claim is only that the neutral network is sometimes very extensive, even if it represents a very small percentage of possible mutants.

Another problem with the work is that they chose a series of mutations that gradually introduce the hydrophobic core of the target sequence, while retaining the hydrophobic core of the starting sequence.  This seems rather bizarre in an evolutionary context.  They admit that a review of related experiments suggests: “in order to change the fold of one sequence into another, its hydrophobic core needs to be destroyed while simultaneously introducing the new one”.

Strelets et al. (1994) analyzed the clustering of protein sequences in sequence space and found: “the CSS [combinatorial sequence space] contains mostly sparsely filled regions (where NME as space density estimation is lower than 10%) along with densely populated regions where most of sequence mutational variants are already realized.”  NME (nearest mutational environment) is defined “as all possible similar k-tuples which differ from the original by one-position change.”  From this they conclude: “It looks as if a limited set of structurally optimized peptide variants were found and selected in the early course of evolution.  During subsequent evolution, they were only changing slightly by single mutations.  Shuffling of peptide blocks was also taking place, resulting in construction of new protein structures.  Such an evolution does not change the initial clustering in the CSS but preserves existing clusters by adding new peptide variants to within the clusters only.”  Their conclusion that a limited set of sequences appeared early in evolution and did not change much since can be interpreted as being consistent with the Klyce theory of strong panspermia.

Rost (1997) examined the distribution of similarities between sequences that fold into similar structures.  “Most pairs of similar structures have sequence identity as low as expected from randomly related sequences (8-9%).  On average, only 3-4% of all residues are ‘anchor’ residues….  The mean identities for convergent (different ancestor) and divergent (same ancestor) evolution of proteins to similar structures are quite close and hence, in most cases, it is difficult to distinguish between the two effects.  In particular, low levels of sequence identity appear not to be indicative of convergent evolution.”  Rost suggests that we would expect to see the following:
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Rost (1997) Figure 4 Legend: Hypothetical distribution of pairwise sequence identity for two evolutionary events.  Firstly, protein pairs that converged from a different ancestor to similar structures (grey line: peak at C).  Secondly, proteins that diverged from a common ancestor maintaining a similar structure (black line: peak at D).  The dashed line indicates that it is not clear a priori which relation to expect between the divergent peak and its tail at high levels of sequence identity.
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But what we actually see is the following:

Rost (1997) Figure 3 Legend: Distribution of pairwise sequence identity for structural alignments (open circles, black line) and random alignments (left panel only; crosses, grey line [barely visible]).  The average sequence identity of all remote structural homologues (<25% pairwise sequence identity, left panel) was ~8.5% (standard deviation 5%).  The dashed line is a Gaussian envelope (left panel) fitted to the observed distribution.  The average sequence identity of random alignments was ~5.6% (standard deviation 3%).
Rost (1997) then makes these observations:  “Three scenarios could have generated the observed distribution for similar structures with vanishing pairwise sequence identity (<15%) as a superposition of two separate events (Fig. 3).”

“1. Divergent evolution has not reached down to very low levels of sequence identity; the observed distribution for remote homologues is entirely dominated by pairs that converged from different ancestors to adopt similar structures.”

“2. Convergent evolution is negligible; all observed pairs have originated from divergence to very low levels of sequence identity.”

“3. Divergent and convergent evolution have reached similar equilibrium distributions.”

Rost (1997) does not draw a definitive conclusion as to which of the three scenarios explain the observed data.  Instead, he states: “Naively, we may have supposed that the level of pairwise sequence identity for remote homologues can be used to distinguish between convergent and divergent evolution.  However, the results presented here suggest that convergent and divergent evolution may have quite similar equilibrium states (difference between divergent and convergent average, D – C, quite small; Fig. 3), and hence, in the remote homology region (<15%), it is difficult to distinguish between the two effects.
Rost (2002) reviews what is know about the distribution of different kinds of protein structures (domains and folds) in the growing body of data.  While much of the paper deals with issues that are not relevant to this review (e.g., “eukaryotes appear to have significantly more coiled-coil proteins that all other kingdoms”), he does touch on some matters of relevance.

Rost defines “domain”: “if protein A is similar to B and to C, but B is not similar to C, then B and C constitute domains of A” and “fold”: “it intuitively refers to subunits between 30 and >700 residues long that let structural biologists recognize a particular protein structure.”  He discusses the idea that “domains constitute the atoms of protein structures”, and mentions: “Teichmann and colleagues suggest that evolution creates novel functions predominantly by combining existing domains.”  He points out that there is growing evidence of the existence of a large proportion of proteins with unique structures (orphans) and states: “If we believe that cross-species evolution was a major event, we could argue that we simply fail to recognize the similarity between a particular kinase in aquifex and human, and therefore incorrectly classify that kinase as an orphan.  In other words, we could argue that there is another protein that adopts the same fold, thus using a similar mechanism to realize function, but that we simply fail to find it because it has diverged too far in evolution.
Rost highlights a recent theory: “Coulson and Moult proposed a somewhat shocking conclusion: most folds are specific to one species (i.e. the aquifex and the human kinase have different structures).  They propose a model that assumes three separated regions: unifolds (realized only once in nature), superfolds ( repeated many times) and mesofolds (between unifolds and superfolds).  Coulson and Moult estimate that there are over 10 000 folds in nature.  Most of these are unifolds corresponding to orphan families.”

Rost concludes by asking a series of relevant questions, and suggesting that we can not answer them yet:  “Is protein structure and/or sequence space continuous, or has nature leaped when inventing folds and functions?  If proteins were assembled from fragments, does this imply modularity of sequences and folds, as for example, seen in short peptide fragments that regulate the targeting of proteins through the cell?  Does the existence of short motifs or modules imply fragment assembly?  I doubt that we have the data to unambiguously answer these questions.  In fact, the evidence from analyses of entirely sequenced organisms is equally spread between pro and con ‘natura non facit saltus’ [nature does not make leaps]”. 

Liu & Rost (2003) review the diversity of methods for grouping proteins into families.  They do not choose any “best” method.  In fact, there are a bewildering variety of methods, and it is discouraging not to know which to use.  However they observe that most grouping methods dissect proteins into structural domain-like fragments before grouping.
Pearson (1997) discusses methods for using sequence similarity searches to identify distantly related sequences, with examples from a large family, the trypsin-like serine protease family.  “Homologous proteins always share a common three-dimensional folding structure and they often share common active sites or binding domains.  Frequently, homologous proteins share common functions, but sometimes they do not.”  “The trypsin-like serine protease family is quite diverse, with a number of very distantly related homologues.  Thus it can be difficult to demonstrate that Streptomyces griseus protease A and protease B are homologous based on sequence similarity alone.”  From their conclusions:

“2. Homologous sequences are usually similar over an entire sequence or domain.  Matches that are > 50% identical in a 20-40 amino acid region frequently occur by chance.  3. While most sequences that share statistically significant similarity (E() < 0.02) are homologous, many distantly related homologous sequences do not share significant homology.  (Significant similarity in low-complexity regions does not imply homology.)”  “5.  Homologous sequences share a common ancestor, and thus a common protein structure.  Depending on the evolutionary distance and divergence path, two or more homologous sequences may have very few absolutely conserved residues.  However, if homology has been inferred between A and B, between B and C, and between C and D, A and D must be homologous, even if they share no significant similarity when compared directly.  In evaluating the results of a similarity search, remember that there is an evolutionary tree that connects the family members.”
Koonin et al. (2002) focus primarily on the power law distribution of the protein folds/domains.  “a domain is defined as a distinct, compact and stable protein structural unit that folds independently of other such units.”  “There is no doubt that protein families and superfamilies are monophyletic, that is, they derive from a common ancestor.  In contrast, monophyly of protein folds, as opposed to folds originating by convergence from unrelated ancestors, remains an issue of debate….  Taken together, these observations seem to argue against convergence as the prevalent force in the evolution of protein folds and suggest that most, if not all, protein folds are monophyletic.”
“By mid-1990, it became clear that the distribution of protein domains among folds, superfamilies and families was extremely uneven – most taxa consisted of a small number of members and only a few were highly abundant.”  “Mathematically, the distribution of protein folds by the number of constituent families has been approximated by a power law.”

They examine a simple model to explain the power law distribution, based on stochastic birth, death and innovation (BDIM) of domains.  These models produced distributions that match those observed in nature.  “using BDIMs, an equilibrium distribution of domain family size is reached exponentially fast during evolution from any initial conditions.”  “BDIMs result in different shapes of equilibrium distributions of family sizes depending on how precisely the birth rate is balanced by the death rate.  The power law appears as an asymptotic in a certain, specific subclass of BDIM, in which the death rate approaches the birth rate for large families, but is considerably greater than the birth rate for small families.  These models accurately describe the distributions of domain family size for all analysed genomes, whereas straightforward approximation with a power law does not fit the data nearly as well.”  “Analysis of BDIMs shows that the innovation rate, which is required to offset the stochastic loss of low-copy families, has to be relatively high and, at least in small, prokaryotic genomes, comparable to the overall intra-genomic duplication (birth) rate.  This supports, from a somewhat unexpected angle, the key role of horizontal gene transfer in prokaryotic evolution that has been suggested by numerous observations made during genome comparisons.”

The work of Golan Yona directly addresses the issues at hand.  They have recently (2000) analyzed the complete set of available protein sequences and constructed a map of the distribution of sequences in protein space, and they have rendered this map into two dimensional images.  It is difficult to map the structure of the entire protein universe, because sequences diverge beyond the ability to recognize similarity, even among sequences that fold into the same structure.  Yona has addressed this problem by combining structural similarity information with sequence similarity information.
Yona & Levitt (2000a) observe that there are many databases that have organized proteins by their sequence similarities, either on the basis of domains or of complete sequences, “However, in many cases sequences have diverged to such an extent that their common origin is untraceable by all these methods.”  Other databases have organized proteins on the basis of three-dimensional structural similarities.  “Because structure is often conserved more than sequence, classification of protein structures based on structural similarities is extremely important.”  Unfortunately, there are only several thousand 3-D protein structures available in the databases.

“Our goal is to map the protein space through a scheme that combines sequence based metrics with structure-based metrics and considers domains as well as entire proteins….  The acquired information about the sequence similarity between and within clusters of both types [sequence and structure], as well as their structural similarity enabled us to develop a framework for unification of these two metrics.”  This paper is essentially a methods paper, that explains the following innovations:

· Adjusting the similarity measures from sequence comparisons and structure comparisons so that they can be combined into a single metric

· Details of how to monitor and limit bad behavior in PSI-BLAST sequence similarity searches
· How to compare profiles from separate PSI-BLAST searches so that the similarities between clusters can be measured, beyond the normal ability of sequence-based methods to detect similarity.

Yona, Linal & Linal (2000) describe a database/web-site, ProtoMap (http://protomap.cornell.edu/) that presents a hierarchical organization of all the proteins in the Swiss-Prot database.  “the protein space is represented as a weighted graph whose vertices are the sequences.  The weight of an edge between two sequences corresponds to their degree of similarity….  Clusters of related proteins correspond to strongly connected sets of vertices in this graph.  The analysis aims to automatically detect these sets, and thus obtain a classification of all protein sequences, as well as a better view of the geometry of the protein space.”  It is possible to zoom in or out of the various representations of the clusters, to see successively higher or lower levels of clustering:
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“Figure 3. Tree-like presentation of a family of glycosyl hydrolases (cluster 100 at level 1e-0).  The different parts of the tree correspond to different subfamilies within this family.  One can zoom in on any part of the tree at various levels of magnification.  By standing on a vertex (without pressing) one can get a summary line of all proteins descendent from this vertex.  When pressing on a vertex, a detailed list of all proteins descendent from the vertex is generated.”
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“Figure 4.  Higher level constituents of the extended `short-chain’ alcohol dehydrogenases family (cluster 19 at level 1e-0).  Each circle stands for a cluster at the higher threshold level.  Each such cluster includes members of a specific subfamily of the alcohol dehydrogenases family.  For clusters with at least two members, the name of the subfamily appears next to the corresponding circle.  Edges represent new connections between the clusters that were formed upon lowering the threshold.  The size of the circles and the width of the edges are proportionate to the number of proteins and the number of connections, respectively.”
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“Figure 6.  A local map of the Ras superfamily.  Each circle stands for a cluster.  Circles’ radii are proportionate to the cluster’s sizes.  Cluster 9 (ProtoMap release 2.0, level 1e-0) contains members of the Ras superfamily.  The cluster is related to other clusters of small GTP-binding proteins.  Edges represent relatedness between clusters and edge width are proportionate to the quality of connection between the corresponding clusters.  Cluster numbers that are underlined indicate no additional neighbors.  Some of the clusters (169 and 499) are connected to additional local maps that are not related to the GTP binding proteins (not shown).”
Yona & Levitt (2000b) use the methods described in Yona & Levitt (2000a) and Yona, Linal & Linal (2000) to construct a complete spatial map of the known protein universe, and they provide a projection of this map onto a two dimensional space:
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“Figure 7:  A 2D projection of the protein space.  Note that this is a preliminary map, and we are still in the process of optimizing it.”

The text makes the following comments about this figure: “the 4,670 clusters (excluding the 634 type-II singletons) form 2,789 superclusters of which 774 contain more than one cluster.”  “In Fig. 7 we show the results of this method when applied to the 2789 super-clusters described in the previous section.  The distances between super-clusters are based on the overall connection between them (those are rejected merges in ProtoMap terminology (Yona et al. 1999), and their quality is defined as the geometric mean of all pariwise connections between clusters).  In this 2D projection of the protein space only 970 superclusters are shown, since the rest made no connections and could not be positioned in this map at the time of writing.”  “Finally, it should be kept in mind that the non-linear projection of the original space onto a 2D plane as in Fig. 7 does not and cannot fully capture the complexity of the original protein space.  There is no bound on the expected distortion after the embedding and some of the pairwise distances may have changed a great deal during the embedding process.  Moreover, this map is created based on partial information since not all distances are defined.  Therefore one should be careful when trying to deduce conclusions from this map.  This is especially true since our current findings suggest that the intrinsic dimension of this space is much higher than 2, i.e. a few tens of dimensions are needed to capture most of the variance that is observed in this space and faithfully embed it in an Euclidean space.”
The objective of Yona & Levitt (2000b) was to create the map of protein space.  They do not go on to analyze the map and draw conclusions from it.

Holm & Sander (1996) construct a 2-D map of all known protein structures.  They start with approximately 4000 know protein structures.  To remove sampling bias, they equalize “all proteins with mutual sequence identity greater than 25% (over most of their length, after optimal sequence alignment) because these have essentially complete structural overlap and in most cases similar function”.  This “leaves a set of 740 representative proteins of known structure.”  They go on to identify the domains within these proteins.  “As a result, the 740 proteins with unique sequence are split into 1048 domains.”  Then they use alignment algorithms to group structurally similar domains.  “This reduces the 1048 domains into 287 structurally unique folds that describe reasonably well the structures of the 740 sequence-unique proteins out of the approximately 4000 known protein structures.”
“Conceptually, each protein structure may be imagined as a point in an abstract, high-dimensional fold space. At close range in this fold space, clusters represent protein families related through strong functional constraints (for example, hemoglobin and myoglobin). At intermediate range, clusters are related by shape similarity that does not necessarily reflect similarity of biological function [for example, globins and colicin A]. At long range, the overall distribution of folds is dominated by five densely populated regions, which we call attractors (Fig. 5).”
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Fig. 5.  Fold space attractors.  (A) Quantification of the pairwise structural similarities in an all-on-all comparison of protein structures allows one to position each structure relative to the others in an abstract, high-dimensional fold space (shape space). The height of the peaks reflects population density (of folds in fold space). The horizontal axes are the two dominant eigenvalues (21), and the vertical axis represents the number of protein shapes per unit area (logarithmic scale, arbitrary units). The long-range distribution of different architectures is revealed in a projection down onto the plane based on multivariate scaling, so that proximity in the plot corresponds to correlated structural neighborhoods.

“It would be tempting to speculate that five attractors exhaust the particularly simple pathways of collapsing α helix and β strand elements into globular proteins.  However, other solutions to folding up proteins do exist and recur between unrelated families….  about 10% of the known fold classes map to small clusters that lack similarity to others.”
Apic et al. (2001) review the distribution of domain combinations in the SCOP database.  “Domains are the building blocks of all globular proteins, and are units of compact three-dimensional structure as well as evolutionary units.  There is a limited repertoire of domain families, so that these domain families are duplicated and combined in different ways to form the set of proteins in a genome.”  “…about two-thirds of the genomic sequences consist of more than one domain.  In accordance with this, the majority of the genomic proteins that have structural assignments in our data set are multi-domain proteins.”  “…we want to investigate the patterns of domain combinations and thus reveal the driving forces for the evolution of more complex proteins….  We ask whether more complex proteins have evolved by the creation of the new protein families, or the recombination of existing families.”

“We observe that multicellular organisms contain much longer repeats than the unicellular organism….”
“Are the repeats of domains from [domain] families in the protozoa just longer in metazoan, or are they repeats of [domain] families that arose later in evolution, and are thus specific to metazoan?  Almost all families that are seen in repeats, that are present in all three phylogenetic groups, are enzymatic families and their repeats are rarely longer than two domains in any organism.”

“The families involved in the longest repeats in the metazoan organisms, repeats of 30 to 50 domains, are specific to metazoan.  These are extracellular domains involved in cell adhesion and signaling, or intracellular regulatory and signaling families.  Cell adhesion and complex signaling, as well as regulatory mechanisms, became important as multicellular organisms evolved.  We show here that some of the additional demands in these organisms were met by internal duplication of metazoan-specific protein families.”

“From the results presented above, we conclude that the number of types of neighbours is small for most families.  Only a few protein families are very versatile in their combination partners, and these versatile families are also the largest families in the genomes.”

“…novel combinations of domains, even among ancient families, are an important part of the process of divergence of genomes that includes sequence divergence, and expansion and contraction of domain families.”

“We show that there are many combinations between common families that are specific for one kingdom, and that the domain recombination of ancient families among each other contributes more to the process of divergence at the level of domain combinations than ancient families combining with kingdom-specific families.  This implies that in creating new functions, nature more frequently combines old building blocks than inventing new ones.”
King et al. (2003) examine the presence of protein families thought to play a key role in the origin of multi-cellular animals, in single-celled organisms, the Choanoflagellates.  Apic et al. (2001), above, state: “Cell adhesion and complex signaling, as well as regulatory mechanisms, became important as multicellular organisms evolved.  We show here that some of the additional demands in these organisms were met by internal duplication of metazoan-specific protein families.”  It is very interesting that King et al. 2003 demonstrate that these protein families apparently predate the origin of metazoans: “The expression in choanoflagellates of proteins involved in cell interactions in Metazoa demonstrates that these proteins evolved before the origin of animals and were later co-opted for development.”
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An insight into domain combinations.
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Domains are the building blocks of all globular proteins, and are units of compact three-dimensional structure as well as evolutionary units. There is a limited repertoire of domain families, so that these domain families are duplicated and combined in different ways to form the set of proteins in a genome. Proteins are gene products. The processes that produce new genes are duplication and recombination as well as gene fusion and fission. We attempt to gain an overview of these processes by studying the structural domains in the proteins of seven genomes from the three kingdoms of life: Eubacteria, Archaea and Eukaryota. We use here the domain and superfamily definitions in Structural Classification of Proteins Database (SCOP) in order to map pairs of adjacent domains in genome sequences in terms of their superfamily combinations. We find 624 out of the 764 superfamilies in SCOP in these genomes, and the 624 families occur in 585 pairwise combinations. Most families are observed in combination with one or two other families, while a few families are very versatile in their combinatorial behaviour. This type of pattern can be described by a scale-free network. Finally, we study domain repeats and we compare the set of the domain combinations in the genomes to those in PDB, and discuss the implications for structural genomics.
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Exploring protein sequence space using knowledge-based potentials.

Babajide A, Farber R, Hofacker IL, Inman J, Lapedes AS, Stadler PF.
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Knowledge-based potentials can be used to decide whether an amino acid sequence is likely to fold into a prescribed native protein structure. We use this idea to survey the sequence-structure relations in protein space. In particular, we test the following two propositions which were found to be important for efficient evolution: the sequences folding into a particular native fold form extensive neutral networks that percolate through sequence space. The neutral networks of any two native folds approach each other to within a few point mutations. Computer simulations using two very different potential functions, M. Sippl’s PROSA pair potential and a neural network based potential, are used to verify these claims.

Fold Des. 1997;2(5):261-9.  Related Articles, Links  

Neutral networks in protein space: a computational study based on knowledge-based potentials of mean force.

Babajide A, Hofacker IL, Sippl MJ, Stadler PF.

Institut fur Theoretische Chemie University of Vienna Wahringerstrasse 17, A-1090, Vienna, Austria.

BACKGROUND: Many protein sequences, often unrelated, adopt similar folds. Sequences folding into the same shape thus form subsets of sequence space. The shape and the connectivity of these sets have implications for protein evolution and de novo design. RESULTS: We investigate the topology of these sets for some proteins with known three-dimensional structure using inverse folding techniques. First, we find that sequences adopting a given fold do not cluster in sequence space and that there is no detectable sequence homology among them. Nevertheless, these sequences are connected in the sense that there exists a path such that every sequence can be reached from every other sequence while the fold remains unchanged. We find similar results for restricted amino acid alphabets in some cases (e. g. ADLG). In other cases, it seems impossible to find sequences with native-like behavior (e.g. QLR). These findings seem to be independent of the particular structure considered. CONCLUSIONS: Amino acid sequences folding into a common shape are distributed homogeneously in sequence space. Hence, the connectivity of the set of these sequences implies the existence of very long neutral paths on all examined protein structures. Regarding protein design, these results imply that sequences with more or less arbitrary chemical properties can be attached to a given structural framework. But we also observe that designability varies significantly among native structures. These features of protein sequence space are similar to what has 
been found for nucleic acids.
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Neutral evolution of model proteins: diffusion in sequence space and overdispersion.

Bastolla U, Roman HE, Vendruscolo M.
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We stimulate the evolution of model protein sequences subject to mutations. A mutation is considered neutral if it conserves (1) the structure of the ground state, (2) its thermodynamic stability and (3) its kinetic accessibility. All other mutations are considered lethal and are rejected. We adopt a lattice model, amenable to a reliable solution of the protein folding problem. We prove the existence of extended neutral networks in sequence space-sequences can evolve until their similarity with the starting point is almost the same as for random sequences. Furthermore, we find that the rate of neutral mutations has a broad distribution in sequence space. Due to this fact, the substitution process is overdispersed (the ratio between variance and mean is larger than 1). This result is in contrast with the simplest model of neutral evolution, which assumes a Poisson process for substitutions, and in qualitative agreement with the biological data. 
J Mol Biol. 1999 Jan 15;285(2):741-53.

Exploring the conformational properties of the sequence space between two proteins with different folds: an experimental study.

Blanco FJ, Angrand I, Serrano L.
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We have examined the conformational properties of 27 polypeptides whose sequences are hybrids of two natural protein domains with 8 % sequence identity and different structures. One of the natural sequences (spectrin SH3 domain) was progressively mutated to get closer to the other sequence (protein G B1 domain), with the only constraint of maintaining the residues at the hydrophobic core. Only two of the mutants are folded, each of them having a large sequence identity with one of the two natural proteins. The rest of the mutants display a wide range of structural properties, but they lack a well-defined three-dimensional structure, a result that is not recognized by computational tools commonly used to evaluate the reliability of structural models. Interestingly, some of the mutants exhibit cooperative thermal denaturation curves and a signal in the near-ultraviolet circular dichroism spectra, both typical features of folded proteins. However, they do not have a well-dispersed nuclear magnetic resonance spectrum indicative of a defined tertiary structure. The results obtained here show that both the hydrophobic core residues and the surface residues are important in determining the structure of the proteins, and suggest that the appearance of a completely new fold from an existing one is unlikely to occur by evolution through a route of folded intermediate sequences.
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How are model protein structures distributed in sequence space?

Bornberg-Bauer E.

Abteilung Theoretische Bioinformatik, Deutsches Krebsforschungszentrum, Heidelberg, Germany. bornberg@dkfz-heidelberg.de

The figure-to-structure maps for all uniquely folding sequences of short hydrophobic polar (HP) model proteins on a square lattice is analyzed to investigate aspects considered relevant to evolution. By ranking structures by their frequencies, few very frequent and many rare structures are found. The distribution can be empirically described by a generalized Zipf’s law. All structures are relatively compact, yet the most compact ones are rare. Most sequences falling to the same structure belong to "neutral nets." These graphs in sequence space are connected by point mutations and centered around prototype sequences, which tolerate the largest number (up to 55%) of neutral mutations. Profiles have been derived from these homologous sequences. Frequent structures conserve hydrophobic cores only while rare ones are sensitive to surface mutations as well. Shape space covering, i.e., the ability to transform any structure into most others with few point mutations, is very unlikely. It is concluded that many characteristic features of the sequence-to-structure map of real proteins, such as the dominance of few folds, can be explained by the simple HP model. In analogy to protein families, nets are dense and well separated in sequence space. Potential implications in better understanding the evolution of proteins and applications to improving database searches are discussed.
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A method to identify protein sequences that fold into a known three-dimensional structure.

Bowie JU, Luthy R, Eisenberg D.

Molecular Biology Institute, University of California, Los Angeles 90024-1570.

The inverse protein folding problem, the problem of finding which amino acid sequences fold into a known three-dimensional (3D) structure, can be effectively attacked by finding sequences that are most compatible with the environments of the residues in the 3D structure. The environments are described by: (i) the area of the residue buried in the protein and inaccessible to solvent; (ii) the fraction of side-chain area that is covered by polar atoms (O and N); and (iii) the local secondary structure. Examples of this 3D profile method are presented for four families of proteins: the globins, cyclic AMP (adenosine 3',5'-monophosphate) receptor-like proteins, the periplasmic binding proteins, and the actins. This method is able to detect the structural similarity of the actins and 70- kilodalton heat shock proteins, even though these protein families share no detectable sequence similarity.
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Expanding protein universe and its origin from the biological Big Bang.

Dokholyan NV, Shakhnovich B, Shakhnovich EI.

Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA. dokh@med.unc.edu

The bottom-up approach to understanding the evolution of organisms is by studying molecular evolution. With the large number of protein structures identified in the past decades, we have discovered peculiar patterns that nature imprints on protein structural space in the course of evolution. In particular, we have discovered that the universe of protein structures is organized hierarchically into a scale-free network. By understanding the cause of these patterns, we attempt to glance at the very origin of life.
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Continuity in Evolution: On the Nature of Transitions 

Walter Fontana, Peter Schuster 

http://www.sciencemag.org/cgi/content/full/280/5368/1451

To distinguish continuous from discontinuous evolutionary change, a relation of nearness between phenotypes is needed. Such a relation is based on the probability of one phenotype being accessible from another through changes in the genotype. This nearness relation is exemplified by calculating the shape neighborhood of a transfer RNA secondary structure and provides a characterization of discontinuous shape transformations in RNA. The simulation of replicating and mutating RNA populations under selection shows that sudden adaptive progress coincides mostly, but not always, with discontinuous shape transformations. The nature of these transformations illuminates the key role of neutral genetic drift in their realization.
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Mapping the protein universe.

Holm L, Sander C.

European Bioinformatics Institute, European Molecular Biology Laboratory, Hinxton Hall, Cambridge CB10 1SD, UK.

The comparison of the three-dimensional shapes of protein molecules poses a complex algorithmic problem. Its solution provides biologists with computational tools to organize the rapidly growing set of thousands of known protein shapes, to identify new types of protein architecture, and to discover unexpected evolutionary relations, reaching back billions of years, between protein molecules. Protein shape comparison also improves tools for identifying gene functions in genome databases by defining the essential sequence-structure features of a protein family. Finally, an exhaustive all-on-all shape comparison provides a map of physical attractor regions in the abstract shape space of proteins, with implications for the processes of protein folding and evolution.
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Smoothness within ruggedness: the role of neutrality in adaptation.

Huynen MA, Stadler PF, Fontana W.

Los Alamos National Laboratory, Theoretical Biology and Biophysics, NM 87545, USA.

RNA secondary structure folding algorithms predict the existence of connected networks of RNA sequences with identical structure. On such networks, evolving populations split into subpopulations, which diffuse independently in sequence space. This demands a distinction between two mutation thresholds: one at which genotypic information is lost and one at which phenotypic information is lost. In between, diffusion enables the search of vast areas in genotype space while still preserving the dominant phenotype. By this dynamic the success of phenotypic adaptation becomes much less sensitive to the initial conditions in genotype space.
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Evolution of key cell signaling and adhesion protein families predates animal origins.

King N, Hittinger CT, Carroll SB.

Howard Hughes Medical Institute (HHMI), University of Wisconsin, 1525 Linden Drive, Madison, WI 53706, USA.

The evolution of animals from a unicellular ancestor involved many innovations. Choanoflagellates, unicellular and colonial protozoa closely related to Metazoa, provide a potential window into early animal evolution. We have found that choanoflagellates express representatives of a surprising number of cell signaling and adhesion protein families that have not previously been isolated from nonmetazoans, including cadherins, C-type lectins, several tyrosine kinases, and tyrosine kinase signaling pathway components. Choanoflagellates have a complex and dynamic tyrosine phosphoprotein profile, and cell proliferation is selectively affected by tyrosine kinase inhibitors. The expression in choanoflagellates of proteins involved in cell interactions in Metazoa demonstrates that these proteins evolved before the origin of animals and were later co-opted for development.
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The structure of the protein universe and genome evolution.

Koonin EV, Wolf YI, Karev GP.

National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA. koonin@ncbi.nih.gov

Despite the practically unlimited number of possible protein sequences, the number of basic shapes in which proteins fold seems not only to be finite, but also to be relatively small, with probably no more than 10,000 folds in existence. Moreover, the distribution of proteins among these folds is highly non-homogeneous -- some folds and superfamilies are extremely abundant, but most are rare. Protein folds and families encoded in diverse genomes show similar size distributions with notable mathematical properties, which also extend to the number of connections between domains in multidomain proteins. All these distributions follow asymptotic power laws, such as have been identified in a wide variety of biological and physical systems, and which are typically associated with scale-free networks. These findings suggest that genome evolution is driven by extremely general mechanisms based on the preferential attachment principle.
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Modelling neutral and selective evolution of protein folding.

Lipman DJ, Wilbur WJ.

National Center for Biotechnology Information, National Library of Medicine, Bethesda, Maryland 20894.

We examine a model evolutionary space consisting of genotypes mapped to their corresponding phenotypes. This mapping is derived from a lattice model for proteins which, despite its highly idealized nature, has been shown to share general properties with real proteins. Large evolutionary networks are observed, with genotypes corresponding to non-lethal phenotypes linked by unit mutational steps. Neutral mutations are necessary for traversing the evolutionary networks, and even one neutral mutation in a genotype can change the phenotypes attainable by a unit mutational step.
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Domains, motifs and clusters in the protein universe.

Liu J, Rost B.
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The rapid growth of bio-sequence information has resulted in an increasing demand for reliable methods that group proteins. A few databases with curated alignments of protein families have demonstrated that expert-driven repositories can keep up with the data deluge in the genome era. These original resources implicitly identify domain-like modules in proteins. An increasing number of automatic methods have sprouted over the past few years that cluster the protein universe. Many of these implicitly dissect proteins into structural domain-like fragments. In a very coarse-grained evaluation, some of the automatic methods appear to be on par with expert-driven approaches. However, neither automatic nor manual methods are currently entirely up to the challenges of tasks such as target selection in structural genomics. Thus, we urgently need refined and sustained automatic clustering tools.

Maynard Smith, J.  1970.  Natural Selection and the concept of a protein space.  Nature, Lond. 225, 563-564.

Comput Appl Biosci. 1997 Aug;13(4):325-32.  Related Articles, Links  

Identifying distantly related protein sequences.

Pearson WR.

Department of Biochemistry, University of Virginia, Charlottesville 22908, USA. wrp@virginia.EDU

Fold Des. 1997;2(3):S19-24.

Protein structures sustain evolutionary drift.

Rost B.

EMBL, Heidelberg, Germany. rost@embl-heidelberg.de

A protein sequence folds into a unique three-dimensional protein structure. Different sequences, though, can fold into similar structures. How stable is a protein structure with respect to sequence changes? What percentage of the sequence is ‘anchor’ residues, that is, residues crucial for protein structure and function? Here, answers to these questions are pursued by analyzing large numbers of structurally homologous protein pairs. Most pairs of similar structures have sequence identity as low as expected from randomly related sequences (8-9%). On average, only 3-4% of all residues are ‘anchor’ residues. The symmetric shape of the distribution at low sequence identity suggests that for most structures, four billion years of evolution was sufficient to reach an equilibrium. The mean identities for convergent (different ancestor) and divergent (same ancestor) evolution of proteins to similar structures are quite close and hence, in most cases, it is difficult to distinguish between the two effects. In particular, low levels of sequence identity appear not to be indicative of convergent evolution.

Curr Opin Struct Biol. 2002 Jun;12(3):409-16.

Did evolution leap to create the protein universe?

Rost B.

CUBIC, Department of Biochemistry and Molecular Biophysics, Columbia University, 650 West 168th Street, BB217, New York, NY 10032, USA. rost@columbia.edu

The genomes of over 60 organisms from all three kingdoms of life are now entirely sequenced. In many respects, the inventory of proteins used in different kingdoms appears surprisingly similar. However, eukaryotes differ from other kingdoms in that they use many long proteins, and have more proteins with coiled-coil helices and with regions abundant in regular secondary structure. Particular structural domains are used in many pathways. Nevertheless, one domain tends to occur only once in one particular pathway. Many proteins do not have close homologues in different species (orphans) and there could even be folds that are specific to one species. This view implies that protein fold space is discrete. An alternative model suggests that structure space is continuous and that modern proteins evolved by aggregating fragments of ancient proteins. Either way, after having harvested proteomes by applying standard tools, the challenge now seems to be to develop better methods for comparative proteomics.

Bioinformatics. 2001 Oct;17(10):988-96.  

Birth of scale-free molecular networks and the number of distinct DNA and protein domains per genome.

Rzhetsky A, Gomez SM.

Columbia Genome Center, Columbia University, New York, NY 10032, USA. ar345@columbia.edu

MOTIVATION: Current growth in the field of genomics has provided a number of exciting approaches to the modeling of evolutionary mechanisms within the genome. Separately, dynamical and statistical analyses of networks such as the World Wide Web and the social interactions existing between humans have shown that these networks can exhibit common fractal properties-including the property of being scale-free. This work attempts to bridge these two fields and demonstrate that the fractal properties of molecular networks are linked to the fractal properties of their underlying genomes. RESULTS: We suggest a stochastic model capable of describing the evolutionary growth of metabolic or signal-transduction networks. This model generates networks that share important statistical properties (so-called scale-free behavior) with real molecular networks. In particular, the frequency of vertices connected to exactly k other vertices follows a power-law distribution. The shape of this distribution remains invariant to changes in network scale: a small subgraph has the same distribution as the complete graph from which it is derived. Furthermore, the model correctly predicts that the frequencies of distinct DNA and protein domains also follow a power-law distribution. Finally, the model leads to a simple equation linking the total number of different DNA and protein domains in a genome with both the total number of genes and the overall network topology. AVAILABILITY: MatLab (MathWorks, Inc.) programs described in this manuscript are available on request from the authors. CONTACT: ar345@columbia.edu.

Proc R Soc Lond B Biol Sci. 1994 Mar 22;255(1344):279-84.
From sequences to shapes and back: a case study in RNA secondary structures.

Schuster P, Fontana W, Stadler PF, Hofacker IL.

Institut fur Molekulare Biotechnologie, Jena, Germany.

RNA folding is viewed here as a map assigning secondary structures to sequences. At fixed chain length the number of sequences far exceeds the number of structures. Frequencies of structures are highly non-uniform and follow a generalized form of Zipf’s law: we find relatively few common and many rare ones. By using an algorithm for inverse folding, we show that sequences sharing the same structure are distributed randomly over sequence space. All common structures can be accessed from an arbitrary sequence by a number of mutations much smaller than the chain length. The sequence space is percolated by extensive neutral networks connecting nearest neighbours folding into identical structures. Implications for evolutionary adaptation and for applied molecular evolution are evident: finding a particular structure by mutation and selection is much simpler than expected and, even if catalytic activity should turn out to be sparse of RNA structures, it can hardly be missed by evolutionary processes.

J Mol Evol. 1994 Dec;39(6):625-30.  Related Articles, Links  

Analysis of peptides from known proteins: clusterization in sequence space.

Strelets VB, Shindyalov IN, Lim HA.

Supercomputer Computations Research Institute, Florida State University, Tallahassee 32306-4052.

A combinatorial sequence space (CSS) model was introduced to represent sequences as a set of overlapping k-tuples of some fixed length which correspond to points in the CSS. The aim was to analyze clusterization of protein sequences in the CSS and to test various hypotheses about the possible evolutionary basis of this clusterization. The authors developed an easy-to-use technique which can reveal and analyze such a clusterization in a multidimensional CSS. Application of the technique led to an unexpectedly high clusterization of points in the CSS corresponding to k-tuples from known proteins. The clusterization could not be inferred from nonuniform amino acid frequencies or be explained by the influence of homologous data. None of the tested possible evolutionary and structural factors could explain the clusterization observed either. It looked as if certain protein sequence variations occurred and were fixed in the early course of evolution. Subsequent evolution (predominantly neutral) allowed only a limited number of changes and permitted new variants which led to preservation of certain k-tuples during the course of evolution. This was consistent with the theory of exon shuffling and protein block structure evolution. Possible applications of sequence space features found were also discussed.

Proteins. 2000 May 15;39(3):244-51. 

Hiking in the energy landscape in sequence space: a bumpy road to good folders.

Tiana G, Broglia RA, Shakhnovich EI.

The Niels Bohr Institute, University of Copenhagen, Copenaghen, Denmark.

With the help of a simple 20-letter lattice model of heteropolymers, we investigated the energy landscape in the space of designed good-folder sequences. Low-energy sequences form clusters, interconnected via neutral networks, in the space of sequences. Residues that play a key role in the foldability of the chain and in the stability of the native state are highly conserved, even among the chains belonging to different clusters. If, according to the interaction matrix, some strong attractive interactions are almost degenerate (i.e., they can be realized by more than one type of amino acid contacts), sequence clusters group into a few superclusters. Sequences belonging to different superclusters are dissimilar, displaying very small ( approximately 10%) similarity, and residues in key sites are, as a rule, not conserved. Similar behavior is observed in the analysis of real protein sequences.

Bioessays. 2002 Feb;24(2):105-9. 

Scale-free networks in biology: new insights into the fundamentals of evolution?

Wolf YI, Karev G, Koonin EV.

National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.

Scale-free network models describe many natural and social phenomena. In particular, networks of interacting components of a living cell were shown to possess scale-free properties. A recent study((1)) compares the system-level properties of metabolic and information networks in 43 archaeal, bacterial and eukaryal species and claims that the scale-free organization of these networks is more conserved during evolution than their content.

Yona, G. & Levitt, M.  2000a.  A unified sequence-structure classification

of proteins: combining sequence and structure in a map of protein space.

In the proceedings of RECOMB 2000, 308-317, ACM press.
We analyze all known protein sequences in search for a global map of protein space that is consistent in terms of both sequence and structure. Our goal is to define clusters of homologous protein domains, beyond those detected by sequence-based methods alone, and then to build a three-dimensional (3D) model for each of the sequences that are homologous to sequences of known 3D structure. This analysis uses both sequence and structure based metrics in the analysis of all protein sequences in a non-redundant (NR) database, comprising all major sequence databases. The analysis starts from the sequences of the SCOP database domains, which have known three-dimensional structures. These sequences are clustered first into families based on sequence similarity alone, without incorporating any information from the SCOP classication. Each sequence-based family is represented by a profile, and this profile is used to search the NR database, using PSI-BLAST. Since PSI-BLAST can lead to false similarities, several different indices of validity are used to control the procedure. Each of the detected sequences is marked and a profile is built for the whole cluster of similar sequences. A 3D model is then built for each sequence in the cluster using an alignment made using the profile as well as the known structures of the SCOP representatives in the cluster. Clusters based on SCOP domains are called type-I clusters. In all we find 1421 type-I clusters with total of 168,431 sequences (44.5% of our NR database). 

After all members of type-I clusters have been marked, we analyze the remaining sequences. The PSI-BLAST procedure is applied repeatedly, each time with a different query, to search what is left over from the previous run. This give type-II clusters, which may overlap. Type-I and type-II clusters are then grouped using higher level measures of similarity. Those pairs of clusters that contain the same common protein (significant overlap in membership), are marked first. The pairs of clusters are then compared using either a structure metric (when 3D structures are known) or a novel sequence profile metric, and clustered into superfamilies and fold" families. This analysis avoids the limitation of classifications that are based just on sequence comparison, and allows us to construct a 3D model for a substantial portion of the sequences in the NR database.

Proc Int Conf Intell Syst Mol Biol. 2000b;8:395-406.
Towards a complete map of the protein space based on a unified sequence and structure analysis of all known proteins.

Yona G, Levitt M.

Department of Structural Biology, Stanford University, CA 94305, USA. golan@gimmel.stanford.edu

In search for global principles that may explain the organization of the space of all possible proteins, we study all known protein sequences and structures. In this paper we present a global map of the protein space based on our analysis. Our protein space contains all protein sequences in a non-redundant (NR) database, which includes all major sequence databases. Using the PSI-BLAST procedure we defined 4,670 clusters of related sequences in this space. Of these clusters, 1,421 are centered on a sequence of known structure. All 4,670 clusters were then compared using either a structure metric (when 3D structures are known) or a novel sequence profile metric. These scores were used to define a unified and consistent metric between all clusters. Two schemes were employed to organize these clusters in a meta-organization. The first uses a graph theory method and cluster the clusters in an hierarchical organization. This organization extends our ability to predict the structure and function of many proteins beyond what is possible with existing tools for sequence analysis. The second uses a variation on a multidimensional scaling technique to embed the clusters in a low dimensional real space. This last approach resulted in a projection of the protein space onto a 2D plane that provides us with a bird's eye view of the protein space. Based on this map we suggest a list of possible target sequences with unknown structure that are likely to adopt new, unknown folds.

Nucleic Acids Res. 2000 Jan 1;28(1):49-55.

ProtoMap: automatic classification of protein sequences and hierarchy of protein families.

Yona G, Linial N, Linial M.

Department of Structural Biology, Fairchild Building D-109, Stanford University, CA 94305, USA. golan@gimmel.stanford.edu

The ProtoMap site offers an exhaustive classification of all proteins in the SWISS-PROT database, into groups of related proteins. The classification is based on analysis of all pairwise similarities among protein sequences. The analysis makes essential use of transitivity to identify homologies among proteins. Within each group of the classification, every two members are either directly or transitively related. However, transitivity is applied restrictively in order to prevent unrelated proteins from clustering together. The classification is done at different levels of confidence, and yields a hierarchical organization of all proteins. The resulting classification splits the protein space into well-defined groups of proteins, which are closely correlated with natural biological families and superfamilies. Many clusters contain protein sequences that are not classified by other databases. The hierarchical organization suggested by our analysis may help in detecting finer subfamilies in families of known proteins. In addition it brings forth interesting relationships between protein families, upon which local maps for the neighborhood of protein families can be sketched. The ProtoMap web server can be accessed at http://www.protomap.cs.huji.ac.il

