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Abstract
The biochemistry of acetogenesis is reviewed. The microbes that catalyze the reactions that are
central to acetogenesis are described and the focus is on the enzymology of the process. These
microbes play a key role in the global carbon cycle, producing over 10 trillion kilograms of acetic
acid annually. Acetogens have the ability to anaerobically convert carbon dioxide and CO into
acetyl-CoA by the Wood–Ljungdahl pathway, which is linked to energy conservation. They also
can convert the six carbons of glucose stoichiometrically into 3 mol of acetate using this pathway.
Acetogens and other anaerobic microbes (e.g., sulfate reducers and methanogens) use the Wood–
Ljungdahl pathway for cell carbon synthesis. Important enzymes in this pathway that are covered
in this review are pyruvate ferredoxin oxidoreductase, CO dehydrogenase/acetyl-CoA synthase, a
corrinoid iron-sulfur protein, a methyltransferase, and the enzymes involved in the conversion of
carbon dioxide to methyl-tetrahydrofolate.
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Introduction
Some anaerobic microbes, including acetogenic bacteria and methanogenic archaea, convert
CO2 to cellular carbon by the Wood–Ljungdahl pathway (Fig. 1).1,2 The global importance
of acetogens is covered fully in Harold Drake’s chapter.3 Acetogenic bacteria use this
pathway as their major means of generating energy for growth. Moorella thermoacetica,
isolated in 1942,4 is the model acetogen and is the organism on which most studies of the
Wood–Ljungdahl have been performed; its genome was recently sequenced. Methanogens
growing on H2/CO2 use the pathway for generating cell carbon; however, those that can
grow on acetate, essentially run the pathway in reverse and generate energy by oxidizing
acetate to 2 mol of CO2.5 Acetoclastic methanogens also convert acetate into acetyl-CoA for
cell carbon synthesis through the combined actions of acetate kinase6,7 and
phosphotransacetylase.8

The Wood–Ljungdahl pathway contains an Eastern (in red) and a Western (in blue) branch
(Fig. 1), as originally described.9 The Eastern branch is essentially the folate-dependent one-
carbon metabolic pathway that is present from bacteria to humans and recapitulated with
methanopterin in methanogens. The Western branch is unique to acetogens, methanogens,
and sulfate reducers, and exhibits novel mechanistic features. Acetogenic bacteria (e.g.,
acetogens or homoacetogens) synthesize acetic acid as their sole or primary metabolic end-
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product. Globally, acetogens produce over 1013 kg (100 billion U.S. tons) of acetic acid
annually,10 which dwarfs the total output of the world’s chemical industry.

Figure 1 depicts growth of acetogens on glucose. However, these organisms can use a
variety of substrates, including the biodegradation products of most natural polymers, such
as cellulose, lignin (sugars, alcohols, aromatic compounds), and inorganic gases (CO, H2,
CO2). When acetogens grow on H2/CO2, carbon enters the Wood–Ljungdahl pathway at the
CO2 reduction step, with H2 serving as the electron donor. Acetogens are important in the
biology of the soil, of extreme environments, and of organisms that house them in their
digestive tract, such as humans, termites, and ruminants.11–13

Pyruvate Ferredoxin Oxidoreductase
Pyruvate ferredoxin oxidoreductase (PFOR) was reviewed relatively recently.14 Catalyzing
the oxidative decarboxylation of pyruvate to form acetyl-CoA and CO2, PFOR links
heterotrophic metabolism to the Wood–Ljungdahl pathway (Fig. 1). PFOR is also key to cell
carbon synthesis since, besides its catabolic function, PFOR catalyzes pyruvate formation by
reductive carboxylation of acetyl-CoA.15,16 Pyruvate can then enter the incomplete
tricarboxylic acid cycle17,18 to generate intermediates for cell carbon synthesis. PFOR is
found in archaea, bacteria, and even anaerobic protozoa like Giardia.19

(1)

The structure of the Desulfovibrio africanus PFOR reveals seven domains.20 Thiamine
pyrophosphate (TPP) and a proximal [4Fe-4S] cluster (Cluster A) are deeply buried within
the protein, while the other two clusters (B and C) lead to the surface (Fig. 2). The TPP
binding site consists of two domains that bear strong structural similarity to those in other
TPP enzymes21 and contains conserved residues that interact with Mg++, pyrophosphate,
and the thiazolium ring. Rapid kinetic studies indicate that the initial steps in oxidative
decarboxylation of pyruvate by PFOR are similar to those of other TPP enzymes.22

Deprotonation of TPP yields the active ylide, which forms an adduct with pyruvate. Then,
CO2 is released, forming the 2α-hydroxyethylidene-TPP adduct (HE-TPP).23 In acetogens,
the CO2 feeds into the Wood–Ljungdahl pathway24,25 (Fig. 1) and, based on isotope-
exchange studies,26 may be channeled directly to CO dehydrogenase/acetyl-CoA synthase
(CODH/ACS).

After forming the HE-TPP intermediate, the negative charge on C-2 of HE-TPP promotes
one-electron reduction of a proximal FeS cluster, forming an HE-TPP radical intermediate
(Fig. 2). Based on the crystal structure, this intermediate was proposed to be a novel sigma-
type acetyl radical27; however, recent studies show that it is a pi radical with spin density
delocalized over the aromatic thiazolium ring, as shown in the figure.28,29

In the next step of the PFOR mechanism, the HE-TPP radical transfers an electron to the Fe-
S electron-transfer chain, presumably through the oxidized A-cluster (Fig. 2). The rate of
this electron-transfer reaction is CoA dependent.30 In the absence of CoA, the half-life of the
HE-TPP radical intermediate is ~2 min; however, in the presence of CoA, the rate of radical
decay increases 100,000-fold.22 By studying various CoA analogues, it was shown that the
thiol group of CoA alone lowers the transition state barrier for electron transfer by 40.5 kJ/
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mol. The final step in the PFOR mechanism is electron transfer through Clusters A, B, and C
(Fig. 2) to ferredoxin,20 the terminal electron acceptor for PFOR. This electron-transfer
reaction occurs extremely rapidly, with a second-order rate constant of 2–7 × 107 M−1

s−1.22,31

CODH/ACS
CODH/ACS was recently reviewed,32 so this part of the Wood–Ljungdahl pathway will be
treated rather briefly. As shown in Figure 1, when acetogens are grown heterotrophically,
the CO2 and electrons generated by the PFOR reaction are utilized by CODH/ACS and
formate dehydrogenase to generate CO and formate, respectively. When they are grown on
CO, CODH generates CO2, which is then converted to formate in the Eastern branch of the
pathway and CO is incorporated directly as the carbonyl group of acetyl-CoA. Both CO and
CO2 are unreactive without a catalyst, but the enzyme-catalyzed reactions are fast, with
turnover numbers as high as 40,000 s−1 reported for CO oxidation by the Ni-CODH from
Carboxydothermus hydrogenoformans at its physiological growth temperature.33 Even the
least active CODHs catalyze CO oxidation at rates of ~50 s−1.34 There are two major classes
of CODHs: the aerobic Mo-Cu-Se CODH from carboxydobacteria and the Ni-CODHs.
Found in aerobic bacteria that oxidize CO with O2

,35,36 the Mo-CODH contains FAD,37 Fe/
S centers, Cu, and 2 Mo atoms bound by molybdopterin cytosine dinucleotide, and its
structure has been solved.38 This enzyme will not be discussed further in this chapter, since
only the Ni-CODH/ACS is involved in the Wood–Ljungdahl pathway. Ni-CODHs are
divided into two classes: the monofunctional nickel CODH, which catalyzes the reaction
shown in Equation 2, and the bifunctional CODH/ACS, which couples Equation 2 (CO
formation) with Equation 3 (acetyl-CoA synthesis). The monofunctional CODH functions
physiologically in the direction of CO oxidation, allowing microbes to take up and oxidize
CO at the low levels found in the environment, while the CODH in the bifunctional protein
converts CO2 into acetyl-CoA.

(2)

(3)

The crystal structures of the monofunctional NI-CODH and the CODH component of the
bifunctional enzymes are very similar.39–42 These mushroom-shaped, homodimeric
enzymes contain five metal clusters per dimer: two C-clusters, two B-clusters, and a
bridging D-cluster. The C-cluster is the catalytic site for CO oxidation and is buried 18†
below the surface. This cluster can be described as a [3Fe-4S] cluster bridged to a binuclear
NiFe cluster. The Rhodospirillum rubrum CODH structure with a bridging Cys between Ni
and a special iron atom called ferrous component II (FCII), while the C. hydrogenoformans
protein appears to have a sulfide bridge between Ni and FCII.43,44 Furthermore, there is
evidence for a catalytically important persulfide at the C-cluster.45 Issues related to the
different structures are discussed in a recent review.46 Cluster B is a typical [4Fe-4S]2+/1+

cluster, while Cluster D is a [4Fe-4S]2+/1+ cluster that bridges the two identical subunits,
similar to the [4Fe-4S]2+/1+ cluster in the iron protein of nitrogenase.

The CODH mechanism involves a Ping-Pong reaction: CODH is reduced by CO in the
“ping” step and the reduced enzyme transfers electrons to an external redox mediator like
ferredoxin in the “pong” step. The reduced electron acceptors then couple to other reduced
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nicolinamide adenine dinucleotide phosphate (NAD(P)H) or ferredoxin-dependent cellular
processes that require energy. Details of the CODH reaction have been reviewed.32 Recent
studies of CODH linked to a pyrolytic graphite electrode show complete reversibility of CO
oxidation and CO2 reduction; in fact, at low pH values, the rate of CO2 reduction exceeds
that of CO oxidation.47

The association of ACS with CODH forms a bi-functional CODH/ACS machine that is
encoded by the acsA/acsB genes, respectively, and plays the key role in the Wood–
Ljungdahl pathway.32,48,49 The CODH component catalyzes the conversion of CO2 to CO
(Eq. 2) to generate CO as a metabolic intermediate.25 The CO2 comes from the growth
medium or from decarboxylation of pyruvate.25,30 Then, ACS catalyzes the condensation of
CO,50 CoA, and the methyl group of a methylated corrinoid iron–sulfur protein (CFeSP) to
generate acetyl-CoA (Eq. 3),25 a precursor of cellular material and a source of energy.

CODH/ACS contains a 140-† channel that delivers CO generated at the C-cluster to the A-
cluster.40,51,52 The only metallocenter in ACS is the A-cluster, which consists of a [4Fe-4S]
cluster bridged to a Ni site (Nip) that is thiolate bridged to another Ni ion in a thiolato-and
carboxamido-type N2S2 coordination environment.40,42,53 Thus, one can describe the A-
cluster as a binuclear NiNi center bridged by a cysteine residue (Cys509) to a [4Fe-4S]
cluster, an arrangement similar to the Fe-Fe hydrogenases in which a [4Fe-4S] cluster and a
binuclear Fe site are bridged by a Cys residue.87,88

Two mechanisms for acetyl-CoA synthesis have been proposed that differ mainly in the
electronic structure of the intermediates: one proposes a paramagnetic Ni(I)-CO species as a
central intermediate,2 and the other proposes a Ni(0) intermediate.54,55 A generic
mechanism that emphasizes the organometallic nature of this reaction sequence is described
in Figure 3.

Step 1, as shown in the figure, involves the migration of CO, derived from CO2 reduction,
through the inter-subunit channel to bind to the Nip site in the A-cluster. The binding of CO
to ACS forms an organometallic complex, called the NiFeC species that has been
characterized by a number of spectroscopic approaches.2 The electronic structure of the
NiFeC species is described as a [4Fe-4S]2+ cluster linked to a Ni1+ center at the Nip site,
while the other Ni apparently remains redox-inert in the Ni2+ state.56 Lindahl’s group has
argued that the NiFeC species is not a true catalytic intermediate in acetyl-CoA synthesis,
that it may represent an inhibited state, and that the Ni(0) state is the catalytically relevant
one.54,55 See the recent review for a discussion of these issues.32 Step 2 in the ACS
mechanism involves methylation of the A-cluster,57 which involves the conversion of one
organometallic species (methyl-Co) to another (methyl-Ni). There is evidence that the
methyl group binds to the Nip site of the A-cluster.58–60 Carbon-carbon bond formation,
Step 3 in the catalytic cycle, occurs by condensation of the methyl and carbonyl groups to
form an acetyl-metal species. In the last step, CoA binds to ACS, triggering thiolysis of the
acetyl-metal bond to form the C-S bond of acetyl-CoA, completing the reactions of the
Western branch of the Wood–Ljungdahl pathway. Figure 3 indicates, for simplicity, that the
ACS reaction sequence is ordered with CO binding before the methyl group. Conversely,
Lindahl has argued for a strictly ordered binding mechanism, with methyl binding first, then
CO, and finally CoA, as described in a recent review.55 In the author’s opinion, there is
insufficient evidence to exclude the 1991 proposal that the carbonylation and methylation
steps occur randomly61 (Fig. 4).

Tetrahydrofolate-Dependent Enzymes
Most of the work on the folate enzymes involved in the Eastern branch of the pathway has
been performed in the Ljungdahl laboratory. The methyl group of acetyl-CoA is formed by
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the six-electron reduction of CO2 in the reactions of the Eastern branch of the acetyl-CoA
pathway (Fig. 1).2,62 First, formate dehydrogenase converts CO2 to formate,63 which is
condensed with H4folate to form 10-formyl-H4folate.64,65 The latter is then converted by a
cyclohydrolase to 5,10-methenyl-H4folate. Next, a dehydrogenase reduces methenyl- to
5,10-methylene-H4folate,66 which is reduced to (6S)-5-CH3-H4folate by a reductase.67,68

Methyltransferase (MeTr, AcsE) and Corrinoid Iron Sulfur Protein (CFeSP,
AcsCD)

The methyl group of CH3-H4folate is transferred to the cobalt site in the cobalamin cofactor
bound to the CFeSP69,70 to form an organometallic methyl-Co(III) intermediate in the
Wood–Ljungdahl pathway (Fig. 1). This reaction is catalyzed by MeTr, encoded by the acsE
gene.24 MeTr belongs to the B12-dependent methyltransferase family that includes
methionine synthase and related enzymes from methanogens.71 We have cloned, sequenced,
and actively overexpressed MeTr72,73 and the CFeSP74 in E coli, making them amenable for
site-directed mutagenesis studies. In collaboration with Cathy Drennan (MIT, Cambridge,
Massachusetts), we also have determined the structure of MeTr and a site-directed variant in
its uncomplexed75 and CH3-H4folate–bound76 states. It was concluded that CH3-H4folate
binds tightly (Kd < 10 μM77) to MeTr within a negatively charged crevice of the triose
phosphate isomerase (TIM) barrel.78 The structure of the CFeSP was also recently solved.79

A key step in the MeTr mechanism is activation of the methyl group of CH3-H4folate, since
the re-action involves displacement at a tertiary amine and because the CH3-N bond is much
stronger than the product CH3-Co bond. Of the activation mechanisms that have been
considered, protonation at N5 of the pterin seems to be most plausible.71 Generation of a
positive charge on N5 would lower the activation barrier for nucleophilic displacement of
the methyl group by the Co(I) nucleophile. There is significant experimental support for
protonation at N5 of the pterin, including proton uptake studies,77,80 pH dependencies of the
steady state, and transient reaction kinetics of MeTr81 and methionine synthase,82 and
studies of variants that are compromised in acid–base catalysis.76 A question that has not
been resolved is whether the proton transfer takes place upon formation of the binary
complex, as indicated by studies with MeTr from M. thermoacetica,49,77 or the ternary
complex (with the methyl acceptor), as concluded from studies on E. coli methionine
synthase.80 Recent studies indicate that this protonation step relies on an H-bonding
network, instead of a single acid–base catalyst and that an Asn residue is a key component
of that network.76

As shown in Figure 1, the CFeSP interfaces between CH3-H4folate/MeTr and CODH/ACS.
This 88-kDa heterodimeric protein contains a [4Fe-S]2+/1+ cluster and a cobalt cobamide.
70,74 The Fe-S cluster plays a role in reductive activation of the cobalt to the active Co(I)
state.83,84 Svetlitchnaia et al.79 proposed that the C-terminal domain (Fig. 5) of the large
subunit is a mobile element that interacts alternatively with the A-cluster domain of ACS
and with MeTr. Three major conformers or complexes are described: (1) a methylation
complex, in which the Co(I)-CFeSP binds MeTr and accepts the methyl group of CH3-
H4folate; (2) the methylated CFeSP; (3) a complex between ACS and the methylated
CFeSP. A fourth conformation, which is not shown here, would be a reductive activation
conformer, in which the corrinoid is in the inactive Co(II) state. This molecular juggling
proposed for the CFeSP shown in Figure 5 has precedent in the related mechanism involving
the various domains of methionine synthase, as shown by the elegant structure–function
studies of Matthews and Ludwig.82,85,86
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Summary
Studies of the enzymes involved in the Wood–Ljungdahl pathway have elucidated new roles
of metal ions in biology (including the formation of bioorganometallic intermediates,
discovery of new heterometallic clusters, and nucleophilic metal ions), uncovered novel
substrate-derived radical intermediates, and revealed channeling of gaseous substrates.
These new outcomes and mechanisms will likely be applicable to other currently less well-
studied metal-dependent enzyme systems. Now that detailed structures of PFOR, CODH/
ACS, the CFeSP, and MeTr are available to provide a structural framework for these novel
and important chemical reactions, mechanistic hypotheses can be posed and tested at a
deeper level using a variety of biochemical and biophysical methods.
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FIGURE 1.
The Wood–Ljungdahl pathway with the Eastern and Western branches depicted in red and
blue, respectively. (In color in Annals on line.)
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FIGURE 2.
PFOR state including the HE-TPP radical, with the structure based on spectroscopic results,
showing highly delocalized spin distribution (From Astashkin et al.29 Used with
permission.), and the distance from HE-TPP radical to coupled cluster. Location of the
clusters is based on the structure (PDB 1KEK).
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FIGURE 3.
ACS mechanism emphasizing the organometallic nature of the reaction sequence and the
channel to deliver CO from the CODH active site to the A-cluster.
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FIGURE 4.
Random mechanism of acetyl-CoA synthesis.
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FIGURE 5.
Proposed conformers and interactions of the CFeSP. (Modified from Svetlitchnaia et al.79)
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